/**
* \file
* \brief A C++ program to demonstrate common Binary Heap Operations
*/
#include <climits>
#include <iostream>
#include <utility>
/** A class for Min Heap */
class MinHeap {
int *harr; ///< pointer to array of elements in heap
int capacity; ///< maximum possible size of min heap
int heap_size; ///< Current number of elements in min heap
public:
/** Constructor: Builds a heap from a given array a[] of given size
* \param[in] capacity initial heap capacity
*/
explicit MinHeap(int cap) {
heap_size = 0;
capacity = cap;
harr = new int[cap];
}
/** to heapify a subtree with the root at given index */
void MinHeapify(int);
int parent(int i) { return (i - 1) / 2; }
/** to get index of left child of node at index i */
int left(int i) { return (2 * i + 1); }
/** to get index of right child of node at index i */
int right(int i) { return (2 * i + 2); }
/** to extract the root which is the minimum element */
int extractMin();
/** Decreases key value of key at index i to new_val */
void decreaseKey(int i, int new_val);
/** Returns the minimum key (key at root) from min heap */
int getMin() { return harr[0]; }
/** Deletes a key stored at index i */
void deleteKey(int i);
/** Inserts a new key 'k' */
void insertKey(int k);
~MinHeap() { delete[] harr; }
};
// Inserts a new key 'k'
void MinHeap::insertKey(int k) {
if (heap_size == capacity) {
std::cout << "\nOverflow: Could not insertKey\n";
return;
}
// First insert the new key at the end
heap_size++;
int i = heap_size - 1;
harr[i] = k;
// Fix the min heap property if it is violated
while (i != 0 && harr[parent(i)] > harr[i]) {
std::swap(harr[i], harr[parent(i)]);
i = parent(i);
}
}
/** Decreases value of key at index 'i' to new_val. It is assumed that new_val
* is smaller than harr[i].
*/
void MinHeap::decreaseKey(int i, int new_val) {
harr[i] = new_val;
while (i != 0 && harr[parent(i)] > harr[i]) {
std::swap(harr[i], harr[parent(i)]);
i = parent(i);
}
}
// Method to remove minimum element (or root) from min heap
int MinHeap::extractMin() {
if (heap_size <= 0)
return INT_MAX;
if (heap_size == 1) {
heap_size--;
return harr[0];
}
// Store the minimum value, and remove it from heap
int root = harr[0];
harr[0] = harr[heap_size - 1];
heap_size--;
MinHeapify(0);
return root;
}
/** This function deletes key at index i. It first reduced value to minus
* infinite, then calls extractMin()
*/
void MinHeap::deleteKey(int i) {
decreaseKey(i, INT_MIN);
extractMin();
}
/** A recursive method to heapify a subtree with the root at given index
* This method assumes that the subtrees are already heapified
*/
void MinHeap::MinHeapify(int i) {
int l = left(i);
int r = right(i);
int smallest = i;
if (l < heap_size && harr[l] < harr[i])
smallest = l;
if (r < heap_size && harr[r] < harr[smallest])
smallest = r;
if (smallest != i) {
std::swap(harr[i], harr[smallest]);
MinHeapify(smallest);
}
}
// Driver program to test above functions
int main() {
MinHeap h(11);
h.insertKey(3);
h.insertKey(2);
h.deleteKey(1);
h.insertKey(15);
h.insertKey(5);
h.insertKey(4);
h.insertKey(45);
std::cout << h.extractMin() << " ";
std::cout << h.getMin() << " ";
h.decreaseKey(2, 1);
std::cout << h.getMin();
return 0;
}