package com.thealgorithms.dynamicprogramming;
/* A Naive recursive implementation
of 0-1 Knapsack problem */
public class BruteForceKnapsack {
// A utility function that returns
// maximum of two integers
static int max(int a, int b) {
return (a > b) ? a : b;
}
// Returns the maximum value that
// can be put in a knapsack of
// capacity W
static int knapSack(int W, int wt[], int val[], int n) {
// Base Case
if (n == 0 || W == 0) {
return 0;
}
// If weight of the nth item is
// more than Knapsack capacity W,
// then this item cannot be included
// in the optimal solution
if (wt[n - 1] > W) {
return knapSack(W, wt, val, n - 1);
} // Return the maximum of two cases:
// (1) nth item included
// (2) not included
else {
return max(val[n - 1] + knapSack(W - wt[n - 1], wt, val, n - 1), knapSack(W, wt, val, n - 1));
}
}
// Driver code
public static void main(String args[]) {
int val[] = new int[]{60, 100, 120};
int wt[] = new int[]{10, 20, 30};
int W = 50;
int n = val.length;
System.out.println(knapSack(W, wt, val, n));
}
}