/**
* @file
* @brief Implementation of FCFS CPU scheduling algorithm
* @details
* FCFS is a non-preemptive CPU scheduling algorithm in which whichever process
* arrives first, gets executed first. If two or more processes arrive
* simultaneously, the process with smaller process ID gets executed first.
* @link https://bit.ly/3ABNXOC
* @author [Pratyush Vatsa](https://github.com/Pratyush219)
*/
#include <algorithm> /// for sorting
#include <cassert> /// for assert
#include <cstdlib> /// random number generation
#include <ctime> /// for time
#include <iomanip> /// for formatting the output
#include <iostream> /// for IO operations
#include <queue> /// for std::priority_queue
#include <unordered_set> /// for std::unordered_set
#include <vector> /// for std::vector
using std::cin;
using std::cout;
using std::endl;
using std::get;
using std::left;
using std::make_tuple;
using std::priority_queue;
using std::rand;
using std::srand;
using std::tuple;
using std::unordered_set;
using std::vector;
/**
* @brief Comparator function for sorting a vector
* @tparam S Data type of Process ID
* @tparam T Data type of Arrival time
* @tparam E Data type of Burst time
* @param t1 First tuple
* @param t2 Second tuple
* @returns true if t1 and t2 are in the CORRECT order
* @returns false if t1 and t2 are in the INCORRECT order
*/
template <typename S, typename T, typename E>
bool sortcol(tuple<S, T, E>& t1, tuple<S, T, E>& t2) {
if (get<1>(t1) < get<1>(t2)) {
return true;
} else if (get<1>(t1) == get<1>(t2) && get<0>(t1) < get<0>(t2)) {
return true;
}
return false;
}
/**
* @class Compare
* @brief Comparator class for priority queue
* @tparam S Data type of Process ID
* @tparam T Data type of Arrival time
* @tparam E Data type of Burst time
*/
template <typename S, typename T, typename E>
class Compare {
public:
/**
* @param t1 First tuple
* @param t2 Second tuple
* @brief A comparator function that checks whether to swap the two tuples
* or not.
* @link Refer to
* https://www.geeksforgeeks.org/comparator-class-in-c-with-examples/ for
* detailed description of comparator
* @returns true if the tuples SHOULD be swapped
* @returns false if the tuples SHOULDN'T be swapped
*/
bool operator()(tuple<S, T, E, double, double, double>& t1,
tuple<S, T, E, double, double, double>& t2) {
// Compare arrival times
if (get<1>(t2) < get<1>(t1)) {
return true;
}
// If arrival times are same, then compare Process IDs
else if (get<1>(t2) == get<1>(t1)) {
return get<0>(t2) < get<0>(t1);
}
return false;
}
};
/**
* @class FCFS
* @brief Class which implements the FCFS scheduling algorithm
* @tparam S Data type of Process ID
* @tparam T Data type of Arrival time
* @tparam E Data type of Burst time
*/
template <typename S, typename T, typename E>
class FCFS {
/**
* Priority queue of schedules(stored as tuples) of processes.
* In each tuple
* 1st element: Process ID
* 2nd element: Arrival Time
* 3rd element: Burst time
* 4th element: Completion time
* 5th element: Turnaround time
* 6th element: Waiting time
*/
priority_queue<tuple<S, T, E, double, double, double>,
vector<tuple<S, T, E, double, double, double>>,
Compare<S, T, E>>
schedule;
// Stores final status of all the processes after completing the execution.
vector<tuple<S, T, E, double, double, double>> result;
// Stores process IDs. Used for confirming absence of a process while adding
// it.
unordered_set<S> idList;
public:
/**
* @brief Adds the process to the ready queue if it isn't already there
* @param id Process ID
* @param arrival Arrival time of the process
* @param burst Burst time of the process
* @returns void
*
*/
void addProcess(S id, T arrival, E burst) {
// Add if a process with process ID as id is not found in idList.
if (idList.find(id) == idList.end()) {
tuple<S, T, E, double, double, double> t =
make_tuple(id, arrival, burst, 0, 0, 0);
schedule.push(t);
idList.insert(id);
}
}
/**
* @brief Algorithm for scheduling CPU processes according to the First Come
* First Serve(FCFS) scheduling algorithm.
*
* @details FCFS is a non-preemptive algorithm in which the process which
* arrives first gets executed first. If two or more processes arrive
* together then the process with smaller process ID runs first (each
* process has a unique proces ID).
*
* I used a min priority queue of tuples to accomplish this task. The
* processes are ordered by their arrival times. If arrival times of some
* processes are equal, then they are ordered by their process ID.
*
* @returns void
*/
vector<tuple<S, T, E, double, double, double>> scheduleForFcfs() {
// Variable to keep track of time elapsed so far
double timeElapsed = 0;
while (!schedule.empty()) {
tuple<S, T, E, double, double, double> cur = schedule.top();
// If the current process arrived at time t2, the last process
// completed its execution at time t1, and t2 > t1.
if (get<1>(cur) > timeElapsed) {
timeElapsed += get<1>(cur) - timeElapsed;
}
// Add Burst time to time elapsed
timeElapsed += get<2>(cur);
// Completion time of the current process will be same as time
// elapsed so far
get<3>(cur) = timeElapsed;
// Turnaround time = Completion time - Arrival time
get<4>(cur) = get<3>(cur) - get<1>(cur);
// Waiting time = Turnaround time - Burst time
get<5>(cur) = get<4>(cur) - get<2>(cur);
result.push_back(cur);
schedule.pop();
}
return result;
}
/**
* @brief Utility function for printing the status of each process after
* execution
* @returns void
*/
void printResult() {
cout << "Status of all the proceses post completion is as follows:"
<< endl;
cout << std::setw(17) << left << "Process ID" << std::setw(17) << left
<< "Arrival Time" << std::setw(17) << left << "Burst Time"
<< std::setw(17) << left << "Completion Time" << std::setw(17)
<< left << "Turnaround Time" << std::setw(17) << left
<< "Waiting Time" << endl;
for (size_t i{}; i < result.size(); i++) {
cout << std::setprecision(2) << std::fixed << std::setw(17) << left
<< get<0>(result[i]) << std::setw(17) << left
<< get<1>(result[i]) << std::setw(17) << left
<< get<2>(result[i]) << std::setw(17) << left
<< get<3>(result[i]) << std::setw(17) << left
<< get<4>(result[i]) << std::setw(17) << left
<< get<5>(result[i]) << endl;
}
}
};
/**
* @brief Function to be used for testing purposes. This function guarantees the
* correct solution for FCFS scheduling algorithm.
* @param input the input data
* @details Sorts the input vector according to arrival time. Processes whose
* arrival times are same get sorted according to process ID For each process,
* completion time, turnaround time and completion time are calculated, inserted
* in a tuple, which is added to the vector result.
* @returns A vector of tuples consisting of process ID, arrival time, burst
* time, completion time, turnaround time and waiting time for each process.
*/
template <typename S, typename T, typename E>
vector<tuple<S, T, E, double, double, double>> get_final_status(
vector<tuple<uint32_t, uint32_t, uint32_t>> input) {
sort(input.begin(), input.end(), sortcol<S, T, E>);
vector<tuple<S, T, E, double, double, double>> result(input.size());
double timeElapsed = 0;
for (size_t i{}; i < input.size(); i++) {
T arrival = get<1>(input[i]);
E burst = get<2>(input[i]);
if (arrival > timeElapsed) {
timeElapsed += arrival - timeElapsed;
}
timeElapsed += burst;
double completion = timeElapsed;
double turnaround = completion - arrival;
double waiting = turnaround - burst;
get<0>(result[i]) = get<0>(input[i]);
get<1>(result[i]) = arrival;
get<2>(result[i]) = burst;
get<3>(result[i]) = completion;
get<4>(result[i]) = turnaround;
get<5>(result[i]) = waiting;
}
return result;
}
/**
* @brief Self-test implementations
* @returns void
*/
static void test() {
for (int i{}; i < 1000; i++) {
srand(time(nullptr));
uint32_t n = 1 + rand() % 1000;
FCFS<uint32_t, uint32_t, uint32_t> readyQueue;
vector<tuple<uint32_t, uint32_t, uint32_t>> input(n);
for (uint32_t i{}; i < n; i++) {
get<0>(input[i]) = i;
srand(time(nullptr));
get<1>(input[i]) = 1 + rand() % 10000;
srand(time(nullptr));
get<2>(input[i]) = 1 + rand() % 10000;
}
for (uint32_t i{}; i < n; i++) {
readyQueue.addProcess(get<0>(input[i]), get<1>(input[i]),
get<2>(input[i]));
}
vector<tuple<uint32_t, uint32_t, uint32_t, double, double, double>>
res = get_final_status<uint32_t, uint32_t, uint32_t>(input);
assert(res == readyQueue.scheduleForFcfs());
// readyQueue.printResult();
}
cout << "All the tests have successfully passed!" << endl;
}
/**
* @brief Entry point of the program
* @returns 0 on exit
*/
int main() {
test(); // run self-test implementations
return 0;
}