"""
monte_carlo_integration(f::Function, a::Real, b::Real, n::Int)
Monte carlo integration is a very easy and scalable way to do multidimentional integrals.
However, only single variable integrals are considered.
# Arguments
- `f`: the function to integrate. (at the momment only single variable is suported)
- `a`: start in the integration limits.
- `b`: endin the integration limits.
- `N`: Number of points to sample. For most simple functions, 1000 to 10,000 should be okay.
# Examples
```julia
julia> monte_carlo_integration(x -> 3*x^2, 0, 1, 100000) # integrate a polynomial
1.0000037602209
julia> monte_carlo_integration(x -> sin(x), 0, pi, 1000) # integrate the sin function
2.0018927826323756
```
# References
- https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-integration
- https://kingaa.github.io/sbied/pfilter/monteCarlo.html
# Contributors
- [AugustoCL](https://github.com/AugustoCL)
- [Ved Mahajan](https://github.com/Ved-Mahajan)
"""
function monte_carlo_integration(f::Function, a::Real, b::Real, n::Int)
Δₓ = ((b - a) / n)
Σ = 0.0
for _ ∈ 1:n
Xᵢ = a + (b-a)*rand()
Σ += f(Xᵢ)
end
return Δₓ * Σ
end