from sklearn import svm
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
def NuSVC(train_x, train_y):
svc_NuSVC = svm.NuSVC()
svc_NuSVC.fit(train_x, train_y)
return svc_NuSVC
def Linearsvc(train_x, train_y):
svc_linear = svm.LinearSVC(tol=10e-2)
svc_linear.fit(train_x, train_y)
return svc_linear
def SVC(train_x, train_y):
SVC = svm.SVC(gamma="auto")
SVC.fit(train_x, train_y)
return SVC
def test(X_new):
"""
3 test cases to be passed
an array containing the sepal length (cm), sepal width (cm), petal length (cm),
petal width (cm) based on which the target name will be predicted
>>> test([1,2,1,4])
'virginica'
>>> test([5, 2, 4, 1])
'versicolor'
>>> test([6,3,4,1])
'versicolor'
"""
iris = load_iris()
train_x, test_x, train_y, test_y = train_test_split(
iris["data"], iris["target"], random_state=4
)
current_model = Linearsvc(train_x, train_y)
prediction = current_model.predict([X_new])
return iris["target_names"][prediction][0]
if __name__ == "__main__":
import doctest
doctest.testmod()