The Algorithms logo
The Algorithms
AboutDonate

Unique Paths

S
/** Author : Siddhant Swarup Mallick
 * Github : https://github.com/siddhant2002
 */


/**
 * A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
 * The robot can only move either down or right at any point in time.
 * The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
 * How many possible unique paths are there?
 */

/** Program description - To find the number of unique paths possible */

package com.thealgorithms.dynamicprogramming;

import java.util.*;

public class UniquePaths {
    public static boolean uniquePaths(int m , int n , int ans) {
        int []dp = new int[n];
        Arrays.fill(dp,1);
        for (int i=1; i<m; i++)
        {
            for (int j=1; j<n; j++)
            {
                dp[j] += dp[j-1];

            }
        }
        return dp[n-1]==ans;
        // return true if predicted answer matches with expected answer
    }
    // The above method runs in O(n) time
    public static boolean uniquePaths2(int m , int n , int ans) {
        int dp[][] = new int[m][n];
        for (int i=0; i<m; i++)
        {
            dp[i][0] = 1;
        }
        for (int j=0; j<n; j++)
        {
            dp[0][j] = 1;
        }
        for (int i=1; i<m; i++)
        {
            for (int j=1; j<n; j++)
            {
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1]==ans;
        // return true if predicted answer matches with expected answer
    }
    // The above mthod takes O(m*n) time
}
/**
     * OUTPUT :
     * Input - m = 3, n = 7
     * Output: it returns either true if expected answer matches with the predicted answer else it returns false
     * 1st approach Time Complexity : O(n)
     * Auxiliary Space Complexity : O(n)
     * Input - m = 3, n = 7
     * Output: it returns either true if expected answer matches with the predicted answer else it returns false
     * 2nd approach Time Complexity : O(m*n)
     * Auxiliary Space Complexity : O(m*n)
     */